Komplexe Zahlen, Teil 9 – Eine Einführung über Wechselspannungen und -ströme

Im Rahmen des Summer of Math Exposition 3 habe ich ein Video zur Einführung komplexer Zahlen über Wechselspannungen und -ströme erstellt (nicht eingebettet).

Die deutsche Version gibt es jetzt auch.

Komplexe Zahlen, Teil 8 – räumliche Schwingungen und Wellen

In Teil 6 der komplexen Zahlen und den bisherigen Teilen zur Fourier-Reihe haben wir uns mit zeitabhängigen Sinus-Funktionen, also zeitlichen Schwingungen, beschäftigt. In diesem Teil soll es um räumliche Schwingungen gehen – in einer und mehr Dimensionen. Den Abschluss bilden dann harmonische Wellen, also Schwingungen, die sich mit der Zeit im Raum ausbreiten.

Abb. 1 zeigt noch einmal eine sinusförmige Schwingung in der Zeit. Wir können sie uns als die Projektion eines rotierenden Zeigers vorstellen, dessen Winkel von der Zeit t abhängt.

Abb. 1: eine sinusförmige Schwingung in der Zeit.

Räumliche Schwingungen in 1D

Wir könnten uns aber auch vorstellen, dass der Winkel des Zeigers nicht von der Zeit t, sondern vom Ort x abhängt. Wie Abb. 2 zeigt, ergibt die Projektion dann eine Sinus-Funktion entlang der x-Achse.

Abb. 2: eine sinusförmige Schwingung entlang der x-Achse.
Weiterlesen „Komplexe Zahlen, Teil 8 – räumliche Schwingungen und Wellen“

Komplexe Zahlen, Teil 7 – Addition in Polardarstellung

Die Polardarstellung komplexer Zahlen (s. Teil 3) ist besonders gut geeignet für Multiplikationen, Divisionen, Potenzen und Wurzeln komplexer Zahlen. Additionen und Subtraktionen sind nicht so einfach.

Mit etwas gutem Willen, geht es aber doch (s. Abb. 1) und führt zu interessanten Resultaten.

polar_add
Abb. 1: Addition in Polardarstellung; hier am Beispiel 1\angle15^\circ + 1\angle75^\circ = \sqrt{3}\angle45^\circ.

Weiterlesen „Komplexe Zahlen, Teil 7 – Addition in Polardarstellung“

Zeiger und Wechselspannungen bzw. Wechselströme

(2023-11-03: Videos zur Motivation komplexer Zahlen mit Wechselströmen gibt es hier auf Deutsch und hier auf Englisch.)

(2018-05-21 überarbeitet) Wechselspannungen und Wechselströme sind im einfachsten Fall sinusförmig. Warum? Weil kompliziertere periodische Signale die Summe von Sinus-Funktionen unterschiedlicher Frequenzen sind (s. die Serie über Fourier-Reihen). Die einfachste Möglichkeit ist also ein Sinus mit einer Frequenz.

Da die Spannung u(t) (in V) und die Stromstärke i(t) (in A) vom selben elektromagnetischen Wechselfeld erzeugt werden, haben sie auch dieselbe Frequenz. Allerdings können sie zeitlich verschoben sein, müssen also nicht dieselbe Phase haben. Ein solches Beispiel ist in Abb. 1 gezeigt.

AnimUIZeiger
Abb. 1: Zeitlicher Verlauf von Spannung u und Stromstärke i bei einer idealen Luftspule.
Weiterlesen „Zeiger und Wechselspannungen bzw. Wechselströme“

Fourier-Reihen, Teil 3 – Die Berechnung des Spektrums

In den ersten beiden Teilen (Teil 1 und Teil 2) haben wir rotierende Zeiger addiert, deren Frequenzen jeweils ganzzahlige Vielfache der Frequenz des langsamsten Zeigers waren. Die Projektion des Summenzeigers führt zu einer periodischen Funktion, mit einer Periodendauer, die gleich der Periode des langsamsten Zeigers ist.

Jetzt drehen wir die Sache um: Wir haben eine reelle, periodische Funktion s (das Signal; um nicht wieder f für die Funktion und die Frequenz zu verwenden), deren Periodendauer gleich T ist. Entsprechend ist ihre Grundfrequenz f_1 = 1/T und die Grundkreisfrequenz \omega_1 = \tau \cdot f_1 = \tau / T. (Als Tauist verwende ich wie immer die Kreiskonstante \tau = 2\pi.) Dieses Signal s wollen wir als die Projektion der Summe rotierender Zeiger

\displaystyle s(t) = \Im\left(\sum_{k=0}^\infty\underline{A}_k \cdot e^{\underline{i}k\omega_1 t}\right) = \sum_{k=0}^\infty\Im\left(\underline{A}_k \cdot e^{\underline{i}k\omega_1 t}\right)

schreiben.

Wie kommen wir nun zu den komplexen Amplituden \underline{A}_k?

Weiterlesen „Fourier-Reihen, Teil 3 – Die Berechnung des Spektrums“

Fourier-Reihen, Teil 1 – Addition rotierender Zeiger

In Teil 6 der Serie über komplexe Zahlen haben wir Zeiger besprochen, die sich mit konstanter Geschwindigkeit im Kreis drehen. Die Projektion so eines Zeigers entlang der reellen Achse ergab eine zeitabhängige Funktion – die allgemeine Sinus-Funktion.

Was passiert, wenn wir – wie in Abb. 1 gezeigt – mehrere solche Zeiger addieren? Welche Funktionen ergeben sich aus der Projektion des Summenzeigers?

ZeigerSin1Sin2
Abb. 1: Addition verschieden schnell rotierender Zeiger. Der rote Summenzeiger läuft nicht mehr auf einem Kreis, sondern entlang einer Epizykloide.
Weiterlesen „Fourier-Reihen, Teil 1 – Addition rotierender Zeiger“

Komplexe Zahlen, Teil 6 – rotierende Pfeile (Zeiger) und trigonometrische Funktionen

Bisher haben wir nur zeitlich fixierte Pfeile in der Ebene betrachtet. Ab jetzt lassen wir sie mit konstanter Geschwindigkeit rotieren – wodurch sie zu Zeigern werden.

Der Pfeil e^{\underline{i}\,\alpha} hatte die Länge (den Betrag) 1 und den Winkel \alpha gegen die reelle Achse \Re (s. Abb. 1). Wenn der Winkel \alpha linear mit der Zeit t zunimmt, kann man ihn als zeitlich veränderlichen Bruchteil der vollen Umdrehung \tau = 2\pi auffassen:

\displaystyle\alpha = \frac{t}{T} \cdot \tau = \frac{\tau}{T} \cdot t .

Abb. 1: Ein Pfeil mit fixem Winkel \alpha = \tau/8 = 45^\circ (links) und ein Zeiger, dessen Winkel linear mit der Zeit zunimmt (rechts). Der mathematisch positive Drehsinn ist gegen den Uhrzeigersinn.
Weiterlesen „Komplexe Zahlen, Teil 6 – rotierende Pfeile (Zeiger) und trigonometrische Funktionen“

Was sind reelle Zahlen?

Zeichenketten und Pfeile

In der Schule lernen wir reelle Zahlen als Dezimalzahlen mit indo-arabischen Ziffern zu schreiben. Z.B. fünfhundertsiebenundzwanzig-einhalb schreiben wir als

527.5 .

Für negative Zahlen setzen wir noch einen kleinen Querstrich (ein Minus) vor die Zahl, z.B. minus siebenhundertsechsunddreißig-einachtel:

-736.125 .

Dezimalzahlen sind Zeichenketten aus den möglichen Ziffern 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, einem Dezimalkomma ».« (oder »,«), und einem eventuellen Vorzeichen (+/-). Diese Zeichenketten können unendlich lang werden (und müssen es für die meisten Zahlen auch sein).

Im 1. Teil über komplexe Zahlen haben wir gesehen, dass man reelle Zahlen aber auch als Pfeile entlang einer Geraden zeichnen kann (s. Abb. 1) – jeder Dezimalzahl entspricht dabei genau ein Pfeil und umgekehrt.

reell_4_3
Abb. 1: Dieselbe reelle Zahl einmal als Dezimalzahl geschrieben (links) und einmal als Pfeil entlang der reellen Achse gezeichnet (rechts).

Was also sind die reellen Zahlen nun wirklich?

Weiterlesen „Was sind reelle Zahlen?“

Komplexe Zahlen, Teil 5 – Rechnen in kartesischer Darstellung

In Teil 1 und Teil 4 haben wir verschiedene geometrische Darstellungen von komplexen Zahlen kennengelernt und auch, wie man damit Rechnungen »konstruktiv« durchführen kann.

In Teil 3 haben wir uns mit den verschiedene algebraische Darstellungen beschäftigt. Jetzt ist es an der Zeit mit den komplexen Zahlen in kartesischer Darstellung schriftlich zu rechnen.

Weiterlesen „Komplexe Zahlen, Teil 5 – Rechnen in kartesischer Darstellung“

Komplexe Zahlen, Teil 4 – eine alternative geometrische Darstellung

In Teil 1 haben wir eine möglich geometrische Darstellung von reellen Zahlen als Pfeile entlang der reellen Achse gesehen. Diese ließ sich auf Pfeile in der Ebene erweitern und führte so zu den komplexen Zahlen.

Diese Pfeile passen gut zur kartesischen Darstellung aus Teil 3. Dort haben wir auch die Polardarstellung kenngelernt, die in gewissem Sinn zur kartesischen »komplementär« ist. Hier werden wir uns die entsprechende geometrische Darstellung überlegen.

Weiterlesen „Komplexe Zahlen, Teil 4 – eine alternative geometrische Darstellung“