Fourier-Reihen, Teil 5 – Schwebungen

In Teil 1 haben wir gesehen, dass die Addition von Sinussignalen unterschiedlicher Frequenzen wieder ein periodisches Signal ergibt, wenn alle Frequenzen ganzzahlige Vielfache einer Grundfrequenz f_1 sind. Die Periodendauer des Summensignals ist dann T = 1/f_1. In diesem Teil beschäftigen wir uns mit Frequenzen, die nicht mehr ganzzahlige Vielfache voneinander sind.

Weiterlesen „Fourier-Reihen, Teil 5 – Schwebungen“

Was sind reelle Zahlen?

Zeichenketten und Pfeile

In der Schule lernen wir reelle Zahlen als Dezimalzahlen mit indo-arabischen Ziffern zu schreiben. Z.B. fünfhundertsiebenundzwanzig-einhalb schreiben wir als

527.5 .

Für negative Zahlen setzen wir noch einen kleinen Querstrich (ein Minus) vor die Zahl, z.B. minus siebenhundertsechsunddreißig-einachtel:

-736.125 .

Dezimalzahlen sind Zeichenketten aus den möglichen Ziffern 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, einem Dezimalkomma ».« (oder »,«), und einem eventuellen Vorzeichen (+/-). Diese Zeichenketten können unendlich lang werden (und müssen es für die meisten Zahlen auch sein).

Im 1. Teil über komplexe Zahlen haben wir gesehen, dass man reelle Zahlen aber auch als Pfeile entlang einer Geraden zeichnen kann (s. Abb. 1) – jeder Dezimalzahl entspricht dabei genau ein Pfeil und umgekehrt.

reell_4_3
Abb. 1: Dieselbe reelle Zahl einmal als Dezimalzahl geschrieben (links) und einmal als Pfeil entlang der reellen Achse gezeichnet (rechts).

Was also sind die reellen Zahlen nun wirklich?

Weiterlesen „Was sind reelle Zahlen?“