Fourier-Reihen, Teil 6b – DFT gemessener Signale

Im letzten Teil haben wir die Fourier-Koeffizienten eines Signals s numerisch berechnet, unter der Voraussetzung, die Periodendauer des Signals zu kennen.

Wenn wir ein Signal messen, kennen wir dessen Periodendauer normalerweise nicht. Wir messen einfach während der Messdauer T_m mit der Sampling-Frequenz (Abtastrate) f_s die momentanen Werte s(t). Wie beeinflusst das die Fourier-Koeffizienten?

Abb. 1 zeigt nochmals unser Signal

s(t) = -1 + 3\sin(2\pi \cdot 0.5\,\text{Hz} \cdot t + \pi) + 2\sin(5 \cdot 2\pi \cdot 0.5\,\text{Hz} \cdot t - \tfrac{\pi}{2})

aus dem letzten Teil.

sampled_meas_sig
Abb. 1: Das Signal aus Teil 6. Innerhalb der Messdauer von 3.5 s ist das Signal dicker gezeichnet. Der hellblaue Verlauf ist die tatsächliche Periodizität, der hellrote Verlauf die scheinbare Periodizität. Die roten Punkte sind die 32 Messwerte.

Weiterlesen „Fourier-Reihen, Teil 6b – DFT gemessener Signale“

Fourier-Reihen, Teil 6 – Diskrete Fourier-Transformation (DFT)

In Teil 3 haben wir gesehen, dass wir ein periodisches Signal s mit Periodendauer T als Summe rotierender Zeiger

\displaystyle s(t) = \sum_{-\infty}^{+\infty}\underline{S}_k \cdot e^{\underline{i}k\omega_1 t}

schreiben können (zumindest wenn s »schön« ist). Dabei ist die Grundfrequenz f_1 = 1/T und die Grundkreisfrequenz \omega_1 = \tau/T mit \tau = 2\pi.

Wir haben auch gesehen, dass wir die Fourier-Koeffizienten \underline{S}_k über die Mittelwerte

\displaystyle\underline{S}_k = \frac{1}{T} \int_0^T s(t) \cdot e^{-\underline{i}k\omega_1 t} \, \mathrm{d}t

erhalten. Dabei müssen wir über eine ganze Periode integrieren, egal wo wir anfangen: 0 bis T, -T/2 bis +T/2, -T/4 bis +3T/4, …

Wenn wir den Verlauf des Signals s tatsächlich als mathematischen Funktionsterm kennen, sind diese Integrale prinzipiell berechenbar – auch wenn es manchmal kompliziert werden kann. Aber was, wenn wir den Funktionsterm des Signals nicht kennen, z.B. weil wir es gemessen haben? – In beiden Fällen können wir die Integrale zumindest näherungsweise numerisch berechnen.

Weiterlesen „Fourier-Reihen, Teil 6 – Diskrete Fourier-Transformation (DFT)“