Wie weit kann der Median vom Mittelwert abweichen?

Unlängst haben wir uns gefragt: »Wie weit können Messwerte vom Mittelwert abweichen?« Dieses Mal diskutieren wir den Median und seine Eigenschaften. Wir werden zeigen, dass der Abstand des Medians m zum Mittelwert \bar{x} immer kleiner oder gleich der Standardabweichung s_n ist:

\boxed{\lvert m-\bar{x}\rvert\leq s_n} .

(Im Rahmen dieses Beitrags nehmen wir an, dass die Messwerte zumindest intervallskaliert sind.)

Unterwegs werden wir dabei zwei wichtige Ungleichungen besprechen.

Weiterlesen „Wie weit kann der Median vom Mittelwert abweichen?“

Wie weit können Messwerte vom Mittelwert abweichen?

Wenn wir eine Größe oft gemessen haben, möchten wir statt allen Messwerten einfach einen typischen Wert angeben. Wie groß ist z.B. das typische Einkommen aller Österreicher? Oft wird dafür das arithmetische Mittel \bar{x} verwendet, das eigentlich der Schwerpunkt der Messwerte ist. (Wie weit Mittelwert und Median voneinander abweichen können, wird hier diskutiert.)

Die einzelnen Messwerte streuen mehr oder weniger weit um diesen Mittelwert. Ein Maß für die Streuung ist die Standardabweichung s_n. Als typischer Bereich der Werte wird oft das Intervall [\bar{x}-s_n;\bar{x}+s_n] verwendet.

Aber wie viele Werte sind wirklich in diesem Bereich bzw. wie weit können die Messwerte überhaupt vom Mittelwert abweichen? Wie wir sehen werden, ist [\bar{x}-\sqrt{2}\,s_n;\bar{x}+\sqrt{2}\,s_n] der Bereich, in dem garantiert mindestens die Hälfte der Messwerte liegt. Und typisch kann ja nur etwas sein, was zumindest für die Hälfte zutrifft. Darüber hinaus liegen sicher alle n Messwerte im Intervall [\bar{x}-\sqrt{n-1}\cdot s_n;\bar{x}+\sqrt{n-1}\cdot s_n].

Weiterlesen „Wie weit können Messwerte vom Mittelwert abweichen?“

Wozu Mittelwerte?

Angenommen, man hat eine Messgröße, die man durch eine Zufallsvariable X modellieren kann. Der Erwartungswert von X sei \mu und die Standardabweichung sei \sigma.

Misst man diese Messgröße mehrfach, wird man voraussichtlich verschiedene Werte erhalten, deren Streuung durch die Verteilung von X modelliert wird.

Berechnet man den Mittelwert \bar{x} dieser n Messungen, kann man ihn durch die Zufallsvariable \overline{X} modellieren. Wenn die Messungen alle voneinander unabhängig waren, gilt für den Erwartungswert des Mittelwertes

\mathscr{E}(\overline{X}) = \mathscr{E}(X) = \mu

und für die Standardabweichung (»Standardfehler«) des Mittelwertes

\displaystyle\mathscr{S}(\overline{X}) = \frac{\mathscr{S}(X)}{\sqrt{n}} = \frac{\sigma}{\sqrt{n}}\,.

Diese Formeln gelten unabhängig von der konkreten Verteilung von X; die zweite wird oft auch als »Wurzel-n-Gesetz« bezeichnet.

Weiterlesen „Wozu Mittelwerte?“