Fourier-Reihen, Teil 8 – von der Reihe zur Fourier-Transformation

Periodische Signale s können wir in ihre einzelnen Frequenzanteile zerlegen und damit in eine Fourier-Reihe entwickeln. Wie wir in Teil 3 gesehen haben, erhalten wir das Transformations-Paar

\displaystyle s(t)=\sum_{k=-\infty}^{+\infty}\underline{S}_k\cdot e^{\underline{i}k\omega_1t}\quad\text{und}\quad\underline{S}_k=\frac{1}{T}\int_{-\frac{T}{2}}^{+\frac{T}{2}}s(t)\cdot e^{-\underline{i}k\omega_1t}\,\mathrm{d}t ,

wobei T die Periodendauer des Signals ist. Von den komplexe Fourier-Koeffizienten \underline{S}_k gibt es abzählbar unendlich viele, jeweils beim k-fachen der Grundkreisfrequenz \omega_1=\tau/T (es gilt \tau=2\pi). Für rein reelle Signale brauchen wir die Koeffizienten nur für k\geq0 berechnen, weil \underline{S}_{-k}=\underline{S}_k^* ist.

In diesem Teil soll es nun speziell um die nicht-periodischen Signale gehen. Wir werden sehen, dass es da auch so ein Transformations-Paar gibt. Abzählbar unendlich viele Koeffizienten reichen dafür aber nicht mehr aus.

Weiterlesen „Fourier-Reihen, Teil 8 – von der Reihe zur Fourier-Transformation“