Malen mit Zahlen, Teil 1 – Warum funktioniert das Lochkameramodell so gut?

Zwischendurch ein kleine Abschweifung in die geometrische Optik, die für Rasterung/Schattierung und Raytracing gleichermaßen zutrifft.

In Teil 0 haben wir die (inverse) Lochkamera besprochen und wie man damit perspektivische Abbildungen erzeugen kann. Wir sehen die Welt aber mit unseren Augen, die keine Lochkameras sind, sondern eine Linse haben. Ebenso haben (Film-)Kameras mehr oder weniger aufwendige Linsensysteme. Warum funktioniert unser Lochkameramodell dann so gut?

Weiterlesen „Malen mit Zahlen, Teil 1 – Warum funktioniert das Lochkameramodell so gut?“

Malen mit Zahlen, Teil 0 – die (inverse) Lochkamera

Dieser Beitrag beginnt eine neue Serie über 3D-Computergraphik. Speziell werden wir uns mit zwei Techniken – Raytracing und Rasterung/Schattierung – beschäftigen.

Im nullten – gemeinsamen – Teil geht es um die einfachste Kamera für perspektivische Abbildungen: die (inverse) Lochkamera bzw. Camera obscura. Ein röhrenförmiges Modell ist in Abb. 1 schematisch dargestellt.

Abb. 1: Eine röhrenförmige Lochkamera bildet ein Motiv ab. G, B sind Gegenstands- bzw. Bildgröße und g, b sind Gegenstands- bzw. Bildweite. Das Bild steht auf dem Kopf.
Weiterlesen „Malen mit Zahlen, Teil 0 – die (inverse) Lochkamera“

Fourier-Reihen, Teil 9 – komplexe Signale und Kurven in der Ebene

In den bisherigen Teilen haben wir uns mit der Fourier-Analyse reeller Signale beschäftigt. Dabei haben wir rotierende Zeiger unterschiedlicher Frequenzen addiert und die Projektion des Summenzeigers ergab unser zeitabhängiges Signal (s. Teil 1).

Der Summenzeiger hat dabei recht komplizierte Kurven in der komplexen Ebene beschrieben (s. speziell Teil 2). In diesem Teil stellen wir nun die Frage, wie wir geschlossene, ebene Kurven in eine Summe von rotierenden Zeigern verwandeln können.

Einfache Beispiele für solche Kurven sind Lissajous-Figuren wie in Abb. 1 gezeigt. Wir betrachten dabei die Bahnkurve eines Punktes, dessen x– und y-Koordinaten allgemeine Sinus-Funktionen der Zeit t sind. Wenn der Quotient der beiden Frequenzen rational ist, sind die Bahnen geschlossen – und damit periodisch.

Abb. 1: Bahn eines Punktes, dessen x– und y-Koordinaten allgemeine Sinus-Funktionen sind. Speziell ist f'=0.2\,\text{Hz} und f''=0.4\,\text{Hz}, was eine Periodendauer von T=5\,\text{s} bedeutet.
Weiterlesen „Fourier-Reihen, Teil 9 – komplexe Signale und Kurven in der Ebene“

Fourier-Reihen, Teil 5 – Schwebungen

In Teil 1 haben wir gesehen, dass die Addition von Sinussignalen unterschiedlicher Frequenzen wieder ein periodisches Signal ergibt, wenn alle Frequenzen ganzzahlige Vielfache einer Grundfrequenz f_1 sind. Die Periodendauer des Summensignals ist dann T = 1/f_1. In diesem Teil beschäftigen wir uns mit Frequenzen, die nicht mehr ganzzahlige Vielfache voneinander sind.

Weiterlesen „Fourier-Reihen, Teil 5 – Schwebungen“

Zeiger und Wechselspannungen bzw. Wechselströme

(2018-05-21 überarbeitet) Wechselspannungen und Wechselströme sind im einfachsten Fall sinusförmig. Warum? Weil kompliziertere periodische Signale die Summe von Sinus-Funktionen unterschiedlicher Frequenzen sind (s. die Serie über Fourier-Reihen). Die einfachste Möglichkeit ist also ein Sinus mit einer Frequenz.

Da die Spannung u(t) (in V) und die Stromstärke i(t) (in A) vom selben elektromagnetischen Wechselfeld erzeugt werden, haben sie auch dieselbe Frequenz. Allerdings können sie zeitlich verschoben sein, müssen also nicht dieselbe Phase haben. Ein solches Beispiel ist in Abb. 1 gezeigt.

AnimUIZeiger
Abb. 1: Zeitlicher Verlauf von Spannung u und Stromstärke i bei einer idealen Luftspule.
Weiterlesen „Zeiger und Wechselspannungen bzw. Wechselströme“

Computertomographie (CT), Teil 8

Im letzten Teil haben wir gesehen, dass Objekte Licht in unterschiedlichem Ausmaß durchlassen können. Im Folgenden werden wir uns nur mit Absorption beschäftigen. Abb. 1 zeigt unsere bereits aus Teil 1 bekannten Objekte, allerdings mit unterschiedlichen Absorptionskoeffizienten. Zusätzlich ist der Kreis jetzt ein innen hohler Kreisring. Die Detektorpixel sind jetzt nicht mehr nur schwarz/weiß, sondern zeigen auch Helligkeiten dazwischen.

SetupParallelAbs
Abb. 1: Drei Objekte mit unterschiedlichen Absorptionskoeffizienten, eines davon hohl. Das Dreieck hat \mu = 0.8\,\text{cm}^{-1}, der Kreisring hat \mu = 0.6\,\text{cm}^{-1} und das Quadrat hat \mu = 0.4\,\text{cm}^{-1}.

Weiterlesen „Computertomographie (CT), Teil 8“

Computertomographie (CT), Teil 7

Bisher haben wir angenommen, dass ein Detektor-Pixel entweder die komplette Lichtintensität »sieht«, oder gar nichts (Schatten). Wie so oft ist diese Schwarz-Weiß-Malerei unrealistisch.

Warum wird es finster?

Ohne Objekte zwischen Strahlungsquelle und Detektor sieht jeder Detektor-Pixel die volle Lichtintensität (Helligkeit) I_0. Mit Objekten dazwischen sieht dieser Pixel die Intensität I, die im Allgemeinen kleiner als I_0 ist.

Weiterlesen „Computertomographie (CT), Teil 7“

Computertomographie (CT), Teil 6

Eine Linie aus kleinen Quadraten

In Teil 5 haben wir die Rasterung besprochen und gesehen, wie man Punkt-Koordinaten in der »realen« Welt in Pixel-Koordinaten umrechnet. Jetzt müssen wir diese Punkte durch eine Linie aus Pixeln verbinden (s. Abb. 1). Die Pixel, in denen die Punkte P und Q liegen, gehören auf jeden Fall dazu. Aber welche noch?

Linie1
Abb. 1: Durch welche Pixel geht die Verbindungslinie von P und Q?

Dieses Problem trat schon zu Beginn der Computergraphikära auf und wurde in den verschiedensten Varianten gelöst. Im Folgenden besprechen wir eine Variante des Bresenham-Algorithmus für Linien.

Weiterlesen „Computertomographie (CT), Teil 6“

Computertomographie (CT), Teil 5

Der diskrete Charme der Pixel

Wie schon gesagt, muss man für die Rückprojektion der Schattenbilder ein Pixel-Gitter über die reale physikalische Szene legen (s. Abb. 1). Man spricht dabei von Rasterung. Nachdem es sich um eine kreisförmige Szene mit Radius r handelt, ist das Gitter sinnvollerweise quadratisch, und die Anzahl der Pixel in x– und y-Richtung wird gleich gewählt, also n_x = n_y = n. Die Pixel sind dann Quadrate mit einer realen Seitenlänge von s = 2 r / n. Um die Formeln etwas zu vereinfachen wählen wir für n eine gerade Zahl, was keine große Einschränkung bedeutet.

Gitter1
Abb. 1: Das kreisförmige Gebiet mit Radius r wird mit einem (8×8)-Pixelgitter überdeckt. Der Ursprung des Pixel-Koordinatensystems befindet sich links oben. Die i-Achse zeigt wie die x-Achse nach rechts, die j-Achse zeigt entgegen der y-Achse nach unten.

Weiterlesen „Computertomographie (CT), Teil 5“

Computertomographie (CT), Teil 4

In Teil 3 haben wir aus unseren »Schattenmessungen« ein sehr grobes Bild unserer Objekte rekonstruiert. Im Folgenden sehen wir uns einige bessere Rekonstruktionen an.

BackProjParallel_512_0.5Deg_128x128
Abb. 1: (128×128)-Pixel Rekonstruktion der Messung mit einem 512-Pixel Detektor und 0.5° Winkelauflösung.

Weiterlesen „Computertomographie (CT), Teil 4“