YouTube-Videos

In den Schuljahren 2019/20 und 2020/21 war aufgrund der Corona-Pandemie zeitweise für einige Monate Distance-Learning angesagt. Ich habe das mit Hilfe von YouTube-Videos erledigt. Weil man auf YouTube außer mit Playlists Videos nicht sinnvoll sortieren kann, folgt hier eine Liste sortiert nach HTL-Jahrgang und Fach.

Nachdem ich zeitweise 3 oder mehr Videos am Tag gemacht habe, rangiert die Qualität von »eh ganz gut« bis »na ja«.

Weiterlesen „YouTube-Videos“

Komplexe Zahlen, Teil 9 – Eine Einführung über Wechselspannungen und -ströme

Im Rahmen des Summer of Math Exposition 3 habe ich ein Video zur Einführung komplexer Zahlen über Wechselspannungen und -ströme erstellt (nicht eingebettet).

Die deutsche Version gibt es jetzt auch.

Warum ein Kondensator und ein Widerstand auch besser integrieren können

Vor einger Zeit haben wir diskutiert, dass ein Kondensator und ein Widerstand ziemlich gut differenzieren/ableiten können. In diesem Beitrag werden wir sehen, dass das auch fürs Integrieren gilt.

Weiterlesen „Warum ein Kondensator und ein Widerstand auch besser integrieren können“

Warum ein Kondensator und ein Widerstand besser differenzieren können als die meisten Leute

In Physik und Technik hängen viele Größen davon ab, wie schnell sich andere ändern. Zum Beispiel ist die Geschwindigkeit die zeitliche Änderungsrate des Orts, die Beschleunigung ist die zeitliche Änderungsrate der Geschwindigkeit, die Kraft ist die örtliche Änderungsrate der potentiellen Energie … Wenn wir diese Größen als Funktionen aufzeichnen, sehen wir die Änderungsrate als Steigung des Graphen.

Mathematisch fassen wir den Begriff der Änderungsrate über den Differentialquotienten, indem wir eine Funktion ableiten bzw. differenzieren:

\displaystyle\frac{\mathrm{d}f(x)}{\mathrm{d}x}=f'(x)=\mathrm{D}_x\,f(x) .

Rein prinzipiell könnten wir eine riesige Tabelle erstellen, wo für jede Funktion ihre Ableitung drinnen steht. Spätestens bei (x^2)'=2x, (2x^2)'=4x, (3x^2)'=6x … beginnt man an dieser Idee zu zweifeln. Stattdessen haben wir z.B. die allgemeine Regel, dass für jede differenzierbare Funktion f und jede Konstante k gilt: (k\cdot f(x))'=k\cdot f'(x). Diese und weitere Regeln sind die Ableitungsregeln, die wir in richtiger Reihenfolge anwenden müssen. Bzw. müssten – denn oft schleichen sich hier Fehler ein.

Interessanterweise schaffen ein Kondensator und ein Widerstand das quasi nebenbei.

Weiterlesen „Warum ein Kondensator und ein Widerstand besser differenzieren können als die meisten Leute“

Wahrscheinlichkeit und radioaktiver Zerfall

Der radioaktive Zerfall eines Atomkerns ist ein völlig zufälliger Prozess. Wir können nicht vorhersagen, wann ein bestimmter Kern zerfallen wird. Daher wissen wir auch nicht genau, wann noch wie viele Kerne nicht zerfallen sind.

Andererseits hat fast jeder in der Oberstufe das radioaktive Zerfallsgesetz

N(t)=N_0\cdot e^{-\lambda\cdot t}

kennengelernt. Dabei ist N_0 die Zahl der zu Beginn vorhandenen Kerne, N(t) die Anzahl der zur Zeit t noch nicht zerfallenen Kerne und \lambda>0 ist die Zerfallskonstante des Materials. Das ist ein exakter funktionaler Zusammenhang.

Wie kann ein völlig zufälliger Vorgang zu einem exakten Gesetz führen?

Weiterlesen „Wahrscheinlichkeit und radioaktiver Zerfall“

YouTube-Kanal

Mitte März wurde aufgrund der COVID-19-Maßnahmen der Unterricht in Österreich bis auf Weiteres auf Distance Learning umgestellt. Ich habe damals einen YouTube-Kanal begonnen, um meine Stunden per Video halten zu können. Für Interessierte findet sich dieser Kanal hier.

In einem der letzten Videos ging es darum, woher wir wissen, dass Materie aus kleinen Teilchen besteht. Dazu gibt es auch ein PDF des Skriptums.

Komplexe Zahlen, Teil 8 – räumliche Schwingungen und Wellen

In Teil 6 der komplexen Zahlen und den bisherigen Teilen zur Fourier-Reihe haben wir uns mit zeitabhängigen Sinus-Funktionen, also zeitlichen Schwingungen, beschäftigt. In diesem Teil soll es um räumliche Schwingungen gehen – in einer und mehr Dimensionen. Den Abschluss bilden dann harmonische Wellen, also Schwingungen, die sich mit der Zeit im Raum ausbreiten.

Abb. 1 zeigt noch einmal eine sinusförmige Schwingung in der Zeit. Wir können sie uns als die Projektion eines rotierenden Zeigers vorstellen, dessen Winkel von der Zeit t abhängt.

Abb. 1: eine sinusförmige Schwingung in der Zeit.

Räumliche Schwingungen in 1D

Wir könnten uns aber auch vorstellen, dass der Winkel des Zeigers nicht von der Zeit t, sondern vom Ort x abhängt. Wie Abb. 2 zeigt, ergibt die Projektion dann eine Sinus-Funktion entlang der x-Achse.

Abb. 2: eine sinusförmige Schwingung entlang der x-Achse.
Weiterlesen „Komplexe Zahlen, Teil 8 – räumliche Schwingungen und Wellen“

Malen mit Zahlen, Teil 1 – Warum funktioniert das Lochkameramodell so gut?

Zwischendurch ein kleine Abschweifung in die geometrische Optik, die für Rasterung/Schattierung und Raytracing gleichermaßen zutrifft.

In Teil 0 haben wir die (inverse) Lochkamera besprochen und wie man damit perspektivische Abbildungen erzeugen kann. Wir sehen die Welt aber mit unseren Augen, die keine Lochkameras sind, sondern eine Linse haben. Ebenso haben (Film-)Kameras mehr oder weniger aufwendige Linsensysteme. Warum funktioniert unser Lochkameramodell dann so gut?

Weiterlesen „Malen mit Zahlen, Teil 1 – Warum funktioniert das Lochkameramodell so gut?“

Malen mit Zahlen, Teil 0 – die (inverse) Lochkamera

Dieser Beitrag beginnt eine neue Serie über 3D-Computergraphik. Speziell werden wir uns mit zwei Techniken – Raytracing und Rasterung/Schattierung – beschäftigen.

Im nullten – gemeinsamen – Teil geht es um die einfachste Kamera für perspektivische Abbildungen: die (inverse) Lochkamera bzw. Camera obscura. Ein röhrenförmiges Modell ist in Abb. 1 schematisch dargestellt.

Abb. 1: Eine röhrenförmige Lochkamera bildet ein Motiv ab. G, B sind Gegenstands- bzw. Bildgröße und g, b sind Gegenstands- bzw. Bildweite. Das Bild steht auf dem Kopf.
Weiterlesen „Malen mit Zahlen, Teil 0 – die (inverse) Lochkamera“

Fourier-Reihen, Teil 9 – komplexe Signale und Kurven in der Ebene

In den bisherigen Teilen haben wir uns mit der Fourier-Analyse reeller Signale beschäftigt. Dabei haben wir rotierende Zeiger unterschiedlicher Frequenzen addiert und die Projektion des Summenzeigers ergab unser zeitabhängiges Signal (s. Teil 1).

Der Summenzeiger hat dabei recht komplizierte Kurven in der komplexen Ebene beschrieben (s. speziell Teil 2). In diesem Teil stellen wir nun die Frage, wie wir geschlossene, ebene Kurven in eine Summe von rotierenden Zeigern verwandeln können.

Einfache Beispiele für solche Kurven sind Lissajous-Figuren wie in Abb. 1 gezeigt. Wir betrachten dabei die Bahnkurve eines Punktes, dessen x– und y-Koordinaten allgemeine Sinus-Funktionen der Zeit t sind. Wenn der Quotient der beiden Frequenzen rational ist, sind die Bahnen geschlossen – und damit periodisch.

Abb. 1: Bahn eines Punktes, dessen x– und y-Koordinaten allgemeine Sinus-Funktionen sind. Speziell ist f'=0.2\,\text{Hz} und f''=0.4\,\text{Hz}, was eine Periodendauer von T=5\,\text{s} bedeutet.
Weiterlesen „Fourier-Reihen, Teil 9 – komplexe Signale und Kurven in der Ebene“