Fourier-Reihen, Teil 6b – DFT gemessener Signale

Im letzten Teil haben wir die Fourier-Koeffizienten eines Signals s numerisch berechnet, unter der Voraussetzung, die Periodendauer des Signals zu kennen.

Wenn wir ein Signal messen, kennen wir dessen Periodendauer normalerweise nicht. Wir messen einfach während der Messdauer T_m mit der Sampling-Frequenz (Abtastrate) f_s die momentanen Werte s(t). Wie beeinflusst das die Fourier-Koeffizienten?

Abb. 1 zeigt nochmals unser Signal

s(t) = -1 + 3\sin(2\pi \cdot 0.5\,\text{Hz} \cdot t + \pi) + 2\sin(5 \cdot 2\pi \cdot 0.5\,\text{Hz} \cdot t - \tfrac{\pi}{2})

aus dem letzten Teil.

sampled_meas_sig
Abb. 1: Das Signal aus Teil 6. Innerhalb der Messdauer von 3.5 s ist das Signal dicker gezeichnet. Der hellblaue Verlauf ist die tatsächliche Periodizität, der hellrote Verlauf die scheinbare Periodizität. Die roten Punkte sind die 32 Messwerte.

Weiterlesen „Fourier-Reihen, Teil 6b – DFT gemessener Signale“

Fourier-Reihen, Teil 6 – Diskrete Fourier-Transformation (DFT)

In Teil 3 haben wir gesehen, dass wir ein periodisches Signal s mit Periodendauer T als Summe rotierender Zeiger

\displaystyle s(t) = \sum_{-\infty}^{+\infty}\underline{S}_k \cdot e^{\underline{i}k\omega_1 t}

schreiben können (zumindest wenn s »schön« ist). Dabei ist die Grundfrequenz f_1 = 1/T und die Grundkreisfrequenz \omega_1 = \tau/T mit \tau = 2\pi.

Wir haben auch gesehen, dass wir die Fourier-Koeffizienten \underline{S}_k über die Mittelwerte

\displaystyle\underline{S}_k = \frac{1}{T} \int_0^T s(t) \cdot e^{-\underline{i}k\omega_1 t} \, \mathrm{d}t

erhalten. Dabei müssen wir über eine ganze Periode integrieren, egal wo wir anfangen: 0 bis T, -T/2 bis +T/2, -T/4 bis +3T/4, …

Wenn wir den Verlauf des Signals s tatsächlich als mathematischen Funktionsterm kennen, sind diese Integrale prinzipiell berechenbar – auch wenn es manchmal kompliziert werden kann. Aber was, wenn wir den Funktionsterm des Signals nicht kennen, z.B. weil wir es gemessen haben? – In beiden Fällen können wir die Integrale zumindest näherungsweise numerisch berechnen.

Weiterlesen „Fourier-Reihen, Teil 6 – Diskrete Fourier-Transformation (DFT)“

Fourier-Reihen, Teil 4 – rein reelle Berechnung des Spektrums

Im letzten Teil haben wir uns überlegt, wie wir ein periodisches Signal s mit Periodendauer T als Projektion der Summe rotierender Zeiger schreiben können:

\displaystyle s(t) = \Im\left(\sum_{k=0}^\infty \underline{A}_k \cdot e^{\underline{i}k\omega_1t}\right) = \sum_{k=0}^\infty \Im\left(\underline{A}_k \cdot e^{\underline{i}k\omega_1t}\right) ,

wobei \omega_1 = \tau/T = 2\pi/T die Grundkreisfrequenz ist. Für die komplexen Amplituden haben wir

\underline{A}_k = \begin{cases} \displaystyle \frac{\underline{i}}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} s(t) \, \mathrm{d}t & \text{wenn } k = 0 \text{ ist}\\[3ex] \displaystyle \frac{2\underline{i}}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} s(t) \cdot e^{-\underline{i}k\omega_1 t} \, \mathrm{d}t & \text{wenn } k > 0 \text{ ist}\end{cases}

erhalten. Die Integrationsgrenzen sind dabei beliebig, solange immer über genau eine Periodendauer T integriert wird.

Obwohl sich die Schönheit der rotierenden Zeiger nur in der komplexen Sichtweise zeigt, bevorzugen manche eine rein reelle Rechnung. Nicht zuletzt deshalb, weil die Fourier-Reihe in vielen Büchern so angegeben ist. Persönlich finde ich jedoch, dass die Sache dadurch nicht schöner wird.

Weiterlesen „Fourier-Reihen, Teil 4 – rein reelle Berechnung des Spektrums“

Was sind reelle Zahlen?

Zeichenketten und Pfeile

In der Schule lernen wir reelle Zahlen als Dezimalzahlen mit indo-arabischen Ziffern zu schreiben. Z.B. fünfhundertsiebenundzwanzig-einhalb schreiben wir als

527.5 .

Für negative Zahlen setzen wir noch einen kleinen Querstrich (ein Minus) vor die Zahl, z.B. minus siebenhundertsechsunddreißig-einachtel:

-736.125 .

Dezimalzahlen sind Zeichenketten aus den möglichen Ziffern 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, einem Dezimalkomma ».« (oder »,«), und einem eventuellen Vorzeichen (+/-). Diese Zeichenketten können unendlich lang werden (und müssen es für die meisten Zahlen auch sein).

Im 1. Teil über komplexe Zahlen haben wir gesehen, dass man reelle Zahlen aber auch als Pfeile entlang einer Geraden zeichnen kann (s. Abb. 1) – jeder Dezimalzahl entspricht dabei genau ein Pfeil und umgekehrt.

reell_4_3
Abb. 1: Dieselbe reelle Zahl einmal als Dezimalzahl geschrieben (links) und einmal als Pfeil entlang der reellen Achse gezeichnet (rechts).

Was also sind die reellen Zahlen nun wirklich?

Weiterlesen „Was sind reelle Zahlen?“