Fourier-Reihen, Teil 4 – rein reelle Berechnung des Spektrums

Im letzten Teil haben wir uns überlegt, wie wir ein periodisches Signal s mit Periodendauer T als Projektion der Summe rotierender Zeiger schreiben können:

\displaystyle s(t) = \Im\left(\sum_{k=0}^\infty \underline{A}_k \cdot e^{\underline{i}k\omega_1t}\right) = \sum_{k=0}^\infty \Im\left(\underline{A}_k \cdot e^{\underline{i}k\omega_1t}\right) ,

wobei \omega_1 = \tau/T = 2\pi/T die Grundkreisfrequenz ist. Für die komplexen Amplituden haben wir

\underline{A}_k = \begin{cases} \displaystyle \frac{\underline{i}}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} s(t) \, \mathrm{d}t & \text{wenn } k = 0 \text{ ist}\\[3ex] \displaystyle \frac{2\underline{i}}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} s(t) \cdot e^{-\underline{i}k\omega_1 t} \, \mathrm{d}t & \text{wenn } k > 0 \text{ ist}\end{cases}

erhalten. Die Integrationsgrenzen sind dabei beliebig, solange immer über genau eine Periodendauer T integriert wird.

Obwohl sich die Schönheit der rotierenden Zeiger nur in der komplexen Sichtweise zeigt, bevorzugen manche eine rein reelle Rechnung. Nicht zuletzt deshalb, weil die Fourier-Reihe in vielen Büchern so angegeben ist. Persönlich finde ich jedoch, dass die Sache dadurch nicht schöner wird.

Weiterlesen „Fourier-Reihen, Teil 4 – rein reelle Berechnung des Spektrums“

Was sind reelle Zahlen?

Zeichenketten und Pfeile

In der Schule lernen wir reelle Zahlen als Dezimalzahlen mit indo-arabischen Ziffern zu schreiben. Z.B. fünfhundertsiebenundzwanzig-einhalb schreiben wir als

527.5 .

Für negative Zahlen setzen wir noch einen kleinen Querstrich (ein Minus) vor die Zahl, z.B. minus siebenhundertsechsunddreißig-einachtel:

-736.125 .

Dezimalzahlen sind Zeichenketten aus den möglichen Ziffern 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, einem Dezimalkomma ».« (oder »,«), und einem eventuellen Vorzeichen (+/-). Diese Zeichenketten können unendlich lang werden (und müssen es für die meisten Zahlen auch sein).

Im 1. Teil über komplexe Zahlen haben wir gesehen, dass man reelle Zahlen aber auch als Pfeile entlang einer Geraden zeichnen kann (s. Abb. 1) – jeder Dezimalzahl entspricht dabei genau ein Pfeil und umgekehrt.

reell_4_3
Abb. 1: Dieselbe reelle Zahl einmal als Dezimalzahl geschrieben (links) und einmal als Pfeil entlang der reellen Achse gezeichnet (rechts).

Was also sind die reellen Zahlen nun wirklich?

Weiterlesen „Was sind reelle Zahlen?“