Komplexe Zahlen, Teil 8 – räumliche Schwingungen und Wellen

In Teil 6 der komplexen Zahlen und den bisherigen Teilen zur Fourier-Reihe haben wir uns mit zeitabhängigen Sinus-Funktionen, also zeitlichen Schwingungen, beschäftigt. In diesem Teil soll es um räumliche Schwingungen gehen – in einer und mehr Dimensionen. Den Abschluss bilden dann harmonische Wellen, also Schwingungen, die sich mit der Zeit im Raum ausbreiten.

Abb. 1 zeigt noch einmal eine sinusförmige Schwingung in der Zeit. Wir können sie uns als die Projektion eines rotierenden Zeigers vorstellen, dessen Winkel von der Zeit t abhängt.

Abb. 1: eine sinusförmige Schwingung in der Zeit.

Räumliche Schwingungen in 1D

Wir könnten uns aber auch vorstellen, dass der Winkel des Zeigers nicht von der Zeit t, sondern vom Ort x abhängt. Wie Abb. 2 zeigt, ergibt die Projektion dann eine Sinus-Funktion entlang der x-Achse.

Abb. 2: eine sinusförmige Schwingung entlang der x-Achse.
Weiterlesen „Komplexe Zahlen, Teil 8 – räumliche Schwingungen und Wellen“

Fourier-Reihen, Teil 8 – von der Reihe zur Fourier-Transformation

Periodische Signale s können wir in ihre einzelnen Frequenzanteile zerlegen und damit in eine Fourier-Reihe entwickeln. Wie wir in Teil 3 gesehen haben, erhalten wir das Transformations-Paar

\displaystyle s(t)=\sum_{k=-\infty}^{+\infty}\underline{S}_k\cdot e^{\underline{i}k\omega_1t}\quad\text{und}\quad\underline{S}_k=\frac{1}{T}\int_{-\frac{T}{2}}^{+\frac{T}{2}}s(t)\cdot e^{-\underline{i}k\omega_1t}\,\mathrm{d}t ,

wobei T die Periodendauer des Signals ist. Von den komplexe Fourier-Koeffizienten \underline{S}_k gibt es abzählbar unendlich viele, jeweils beim k-fachen der Grundkreisfrequenz \omega_1=\tau/T (es gilt \tau=2\pi). Für rein reelle Signale brauchen wir die Koeffizienten nur für k\geq0 berechnen, weil \underline{S}_{-k}=\underline{S}_k^* ist.

In diesem Teil soll es nun speziell um die nicht-periodischen Signale gehen. Wir werden sehen, dass es da auch so ein Transformations-Paar gibt. Abzählbar unendlich viele Koeffizienten reichen dafür aber nicht mehr aus.

Weiterlesen „Fourier-Reihen, Teil 8 – von der Reihe zur Fourier-Transformation“

Fourier-Reihen, Teil 5 – Schwebungen

In Teil 1 haben wir gesehen, dass die Addition von Sinussignalen unterschiedlicher Frequenzen wieder ein periodisches Signal ergibt, wenn alle Frequenzen ganzzahlige Vielfache einer Grundfrequenz f_1 sind. Die Periodendauer des Summensignals ist dann T = 1/f_1. In diesem Teil beschäftigen wir uns mit Frequenzen, die nicht mehr ganzzahlige Vielfache voneinander sind.

Weiterlesen „Fourier-Reihen, Teil 5 – Schwebungen“

Fourier-Reihen, Teil 2 – Das Spektrum

In Teil 1 haben wir gesehen, dass die Projektion der Summe rotierender Zeiger eine periodische Funktion ergeben kann, wenn die Frequenzen der einzelnen Zeiger ganzzahlige Vielfache der Frequenz des langsamsten Zeigers sind.

In diesem Beitrag werden wir ein paar weitere Beispiele sehen und uns die komplexen Amplituden \underline{A}_k der einzelnen Zeiger genauer ansehen. Die Menge dieser \underline{A}_k einer Funktion f ist das Spektrum von f.

Weiterlesen „Fourier-Reihen, Teil 2 – Das Spektrum“

Fourier-Reihen, Teil 1 – Addition rotierender Zeiger

In Teil 6 der Serie über komplexe Zahlen haben wir Zeiger besprochen, die sich mit konstanter Geschwindigkeit im Kreis drehen. Die Projektion so eines Zeigers entlang der reellen Achse ergab eine zeitabhängige Funktion – die allgemeine Sinus-Funktion.

Was passiert, wenn wir – wie in Abb. 1 gezeigt – mehrere solche Zeiger addieren? Welche Funktionen ergeben sich aus der Projektion des Summenzeigers?

ZeigerSin1Sin2
Abb. 1: Addition verschieden schnell rotierender Zeiger. Der rote Summenzeiger läuft nicht mehr auf einem Kreis, sondern entlang einer Epizykloide.
Weiterlesen „Fourier-Reihen, Teil 1 – Addition rotierender Zeiger“

Komplexe Zahlen, Teil 6b – die allgemeine Sinus-Funktion

Im letzten Teil haben wir gesehen, wie rotierende Zeiger mit der Sinus-Funktion zusammenhängen. Wir konnten die Kreisfrequenz \omega, die Amplitude A, die Phase \varphi oder den Mittelwert m vorgeben.

Oder wir geben alle vier Parameter gleichzeitig vor, was uns zur allgemeinen Sinus-Funktion

\Im\left(\underline{A}e^{\underline{i}\omega t} + m\underline{i}\right) = \Im\left(A e^{\underline{i} (\omega t + \varphi)} + m\underline{i}\right) = A\sin(\omega t + \varphi) + m

führt. Ein Beispiel dafür zeigt Abb. 1.

ZeigerAllgSin
Abb. 1: allgemeine Sinus-Funktion mit Amplitude A = 2, Kreisfrequenz \omega, Phase \varphi = \tau/8 = 45^\circ und Mittelwert m = 1.
Weiterlesen „Komplexe Zahlen, Teil 6b – die allgemeine Sinus-Funktion“

Komplexe Zahlen, Teil 6 – rotierende Pfeile (Zeiger) und trigonometrische Funktionen

Bisher haben wir nur zeitlich fixierte Pfeile in der Ebene betrachtet. Ab jetzt lassen wir sie mit konstanter Geschwindigkeit rotieren – wodurch sie zu Zeigern werden.

Der Pfeil e^{\underline{i}\,\alpha} hatte die Länge (den Betrag) 1 und den Winkel \alpha gegen die reelle Achse \Re (s. Abb. 1). Wenn der Winkel \alpha linear mit der Zeit t zunimmt, kann man ihn als zeitlich veränderlichen Bruchteil der vollen Umdrehung \tau = 2\pi auffassen:

\displaystyle\alpha = \frac{t}{T} \cdot \tau = \frac{\tau}{T} \cdot t .

Abb. 1: Ein Pfeil mit fixem Winkel \alpha = \tau/8 = 45^\circ (links) und ein Zeiger, dessen Winkel linear mit der Zeit zunimmt (rechts). Der mathematisch positive Drehsinn ist gegen den Uhrzeigersinn.
Weiterlesen „Komplexe Zahlen, Teil 6 – rotierende Pfeile (Zeiger) und trigonometrische Funktionen“