Komplexe Zahlen, Teil 8 – räumliche Schwingungen und Wellen

In Teil 6 der komplexen Zahlen und den bisherigen Teilen zur Fourier-Reihe haben wir uns mit zeitabhängigen Sinus-Funktionen, also zeitlichen Schwingungen, beschäftigt. In diesem Teil soll es um räumliche Schwingungen gehen – in einer und mehr Dimensionen. Den Abschluss bilden dann harmonische Wellen, also Schwingungen, die sich mit der Zeit im Raum ausbreiten.

Abb. 1 zeigt noch einmal eine sinusförmige Schwingung in der Zeit. Wir können sie uns als die Projektion eines rotierenden Zeigers vorstellen, dessen Winkel von der Zeit t abhängt.

Abb. 1: eine sinusförmige Schwingung in der Zeit.

Räumliche Schwingungen in 1D

Wir könnten uns aber auch vorstellen, dass der Winkel des Zeigers nicht von der Zeit t, sondern vom Ort x abhängt. Wie Abb. 2 zeigt, ergibt die Projektion dann eine Sinus-Funktion entlang der x-Achse.

Abb. 2: eine sinusförmige Schwingung entlang der x-Achse.
Weiterlesen „Komplexe Zahlen, Teil 8 – räumliche Schwingungen und Wellen“

Fourier-Reihen, Teil 9 – komplexe Signale und Kurven in der Ebene

In den bisherigen Teilen haben wir uns mit der Fourier-Analyse reeller Signale beschäftigt. Dabei haben wir rotierende Zeiger unterschiedlicher Frequenzen addiert und die Projektion des Summenzeigers ergab unser zeitabhängiges Signal (s. Teil 1).

Der Summenzeiger hat dabei recht komplizierte Kurven in der komplexen Ebene beschrieben (s. speziell Teil 2). In diesem Teil stellen wir nun die Frage, wie wir geschlossene, ebene Kurven in eine Summe von rotierenden Zeigern verwandeln können.

Einfache Beispiele für solche Kurven sind Lissajous-Figuren wie in Abb. 1 gezeigt. Wir betrachten dabei die Bahnkurve eines Punktes, dessen x– und y-Koordinaten allgemeine Sinus-Funktionen der Zeit t sind. Wenn der Quotient der beiden Frequenzen rational ist, sind die Bahnen geschlossen – und damit periodisch.

Abb. 1: Bahn eines Punktes, dessen x– und y-Koordinaten allgemeine Sinus-Funktionen sind. Speziell ist f'=0.2\,\text{Hz} und f''=0.4\,\text{Hz}, was eine Periodendauer von T=5\,\text{s} bedeutet.
Weiterlesen „Fourier-Reihen, Teil 9 – komplexe Signale und Kurven in der Ebene“

Fourier-Reihen, Teil 5 – Schwebungen

In Teil 1 haben wir gesehen, dass die Addition von Sinussignalen unterschiedlicher Frequenzen wieder ein periodisches Signal ergibt, wenn alle Frequenzen ganzzahlige Vielfache einer Grundfrequenz f_1 sind. Die Periodendauer des Summensignals ist dann T = 1/f_1. In diesem Teil beschäftigen wir uns mit Frequenzen, die nicht mehr ganzzahlige Vielfache voneinander sind.

Weiterlesen „Fourier-Reihen, Teil 5 – Schwebungen“

Komplexe Zahlen, Teil 7 – Addition in Polardarstellung

Die Polardarstellung komplexer Zahlen (s. Teil 3) ist besonders gut geeignet für Multiplikationen, Divisionen, Potenzen und Wurzeln komplexer Zahlen. Additionen und Subtraktionen sind nicht so einfach.

Mit etwas gutem Willen, geht es aber doch (s. Abb. 1) und führt zu interessanten Resultaten.

polar_add
Abb. 1: Addition in Polardarstellung; hier am Beispiel 1\angle15^\circ + 1\angle75^\circ = \sqrt{3}\angle45^\circ.

Weiterlesen „Komplexe Zahlen, Teil 7 – Addition in Polardarstellung“

Das Geheimnis der Prozentrechnung

Die Prozentrechnung wird oft als schwierig befunden. Vielleicht auch deshalb, weil verschiedene Dinge miteinander vermischt werden.

Da ist zunächst einmal ein spezielles %-Zeichen. Aber das Einzige, was wir dazu wissen müssen, ist:

Das %-Zeichen ist die multiplikative Konstante 1 / 100 = 0.01 .

Weiterlesen „Das Geheimnis der Prozentrechnung“

Zeiger und Wechselspannungen bzw. Wechselströme

(2018-05-21 überarbeitet) Wechselspannungen und Wechselströme sind im einfachsten Fall sinusförmig. Warum? Weil kompliziertere periodische Signale die Summe von Sinus-Funktionen unterschiedlicher Frequenzen sind (s. die Serie über Fourier-Reihen). Die einfachste Möglichkeit ist also ein Sinus mit einer Frequenz.

Da die Spannung u(t) (in V) und die Stromstärke i(t) (in A) vom selben elektromagnetischen Wechselfeld erzeugt werden, haben sie auch dieselbe Frequenz. Allerdings können sie zeitlich verschoben sein, müssen also nicht dieselbe Phase haben. Ein solches Beispiel ist in Abb. 1 gezeigt.

AnimUIZeiger
Abb. 1: Zeitlicher Verlauf von Spannung u und Stromstärke i bei einer idealen Luftspule.
Weiterlesen „Zeiger und Wechselspannungen bzw. Wechselströme“

Fourier-Reihen, Teil 4 – rein reelle Berechnung des Spektrums

Im letzten Teil haben wir uns überlegt, wie wir ein periodisches Signal s mit Periodendauer T als Projektion der Summe rotierender Zeiger schreiben können:

\displaystyle s(t) = \Im\left(\sum_{k=0}^\infty \underline{A}_k \cdot e^{\underline{i}k\omega_1t}\right) = \sum_{k=0}^\infty \Im\left(\underline{A}_k \cdot e^{\underline{i}k\omega_1t}\right) ,

wobei \omega_1 = \tau/T = 2\pi/T die Grundkreisfrequenz ist. Für die komplexen Amplituden haben wir

\underline{A}_k = \begin{cases} \displaystyle \frac{\underline{i}}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} s(t) \, \mathrm{d}t & \text{wenn } k = 0 \text{ ist}\\[3ex] \displaystyle \frac{2\underline{i}}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} s(t) \cdot e^{-\underline{i}k\omega_1 t} \, \mathrm{d}t & \text{wenn } k > 0 \text{ ist}\end{cases}

erhalten. Die Integrationsgrenzen sind dabei beliebig, solange immer über genau eine Periodendauer T integriert wird.

Obwohl sich die Schönheit der rotierenden Zeiger nur in der komplexen Sichtweise zeigt, bevorzugen manche eine rein reelle Rechnung. Nicht zuletzt deshalb, weil die Fourier-Reihe in vielen Büchern so angegeben ist. Persönlich finde ich jedoch, dass die Sache dadurch nicht schöner wird.

Weiterlesen „Fourier-Reihen, Teil 4 – rein reelle Berechnung des Spektrums“

Fourier-Reihen, Teil 3 – Die Berechnung des Spektrums

In den ersten beiden Teilen (Teil 1 und Teil 2) haben wir rotierende Zeiger addiert, deren Frequenzen jeweils ganzzahlige Vielfache der Frequenz des langsamsten Zeigers waren. Die Projektion des Summenzeigers führt zu einer periodischen Funktion, mit einer Periodendauer, die gleich der Periode des langsamsten Zeigers ist.

Jetzt drehen wir die Sache um: Wir haben eine reelle, periodische Funktion s (das Signal; um nicht wieder f für die Funktion und die Frequenz zu verwenden), deren Periodendauer gleich T ist. Entsprechend ist ihre Grundfrequenz f_1 = 1/T und die Grundkreisfrequenz \omega_1 = \tau \cdot f_1 = \tau / T. (Als Tauist verwende ich wie immer die Kreiskonstante \tau = 2\pi.) Dieses Signal s wollen wir als die Projektion der Summe rotierender Zeiger

\displaystyle s(t) = \Im\left(\sum_{k=0}^\infty\underline{A}_k \cdot e^{\underline{i}k\omega_1 t}\right) = \sum_{k=0}^\infty\Im\left(\underline{A}_k \cdot e^{\underline{i}k\omega_1 t}\right)

schreiben.

Wie kommen wir nun zu den komplexen Amplituden \underline{A}_k?

Weiterlesen „Fourier-Reihen, Teil 3 – Die Berechnung des Spektrums“

Fourier-Reihen, Teil 2 – Das Spektrum

In Teil 1 haben wir gesehen, dass die Projektion der Summe rotierender Zeiger eine periodische Funktion ergeben kann, wenn die Frequenzen der einzelnen Zeiger ganzzahlige Vielfache der Frequenz des langsamsten Zeigers sind.

In diesem Beitrag werden wir ein paar weitere Beispiele sehen und uns die komplexen Amplituden \underline{A}_k der einzelnen Zeiger genauer ansehen. Die Menge dieser \underline{A}_k einer Funktion f ist das Spektrum von f.

Weiterlesen „Fourier-Reihen, Teil 2 – Das Spektrum“

Fourier-Reihen, Teil 1 – Addition rotierender Zeiger

In Teil 6 der Serie über komplexe Zahlen haben wir Zeiger besprochen, die sich mit konstanter Geschwindigkeit im Kreis drehen. Die Projektion so eines Zeigers entlang der reellen Achse ergab eine zeitabhängige Funktion – die allgemeine Sinus-Funktion.

Was passiert, wenn wir – wie in Abb. 1 gezeigt – mehrere solche Zeiger addieren? Welche Funktionen ergeben sich aus der Projektion des Summenzeigers?

ZeigerSin1Sin2
Abb. 1: Addition verschieden schnell rotierender Zeiger. Der rote Summenzeiger läuft nicht mehr auf einem Kreis, sondern entlang einer Epizykloide.
Weiterlesen „Fourier-Reihen, Teil 1 – Addition rotierender Zeiger“