Fourier-Reihen, Teil 6 – Diskrete Fourier-Transformation (DFT)

In Teil 3 haben wir gesehen, dass wir ein periodisches Signal s mit Periodendauer T als Summe rotierender Zeiger

\displaystyle s(t) = \sum_{-\infty}^{+\infty}\underline{S}_k \cdot e^{\underline{i}k\omega_1 t}

schreiben können (zumindest wenn s »schön« ist). Dabei ist die Grundfrequenz f_1 = 1/T und die Grundkreisfrequenz \omega_1 = \tau/T mit \tau = 2\pi.

Wir haben auch gesehen, dass wir die Fourier-Koeffizienten \underline{S}_k über die Mittelwerte

\displaystyle\underline{S}_k = \frac{1}{T} \int_0^T s(t) \cdot e^{-\underline{i}k\omega_1 t} \, \mathrm{d}t

erhalten. Dabei müssen wir über eine ganze Periode integrieren, egal wo wir anfangen: 0 bis T, -T/2 bis +T/2, -T/4 bis +3T/4, …

Wenn wir den Verlauf des Signals s tatsächlich als mathematischen Funktionsterm kennen, sind diese Integrale prinzipiell berechenbar – auch wenn es manchmal kompliziert werden kann. Aber was, wenn wir den Funktionsterm des Signals nicht kennen, z.B. weil wir es gemessen haben? – In beiden Fällen können wir die Integrale zumindest näherungsweise numerisch berechnen.

Weiterlesen „Fourier-Reihen, Teil 6 – Diskrete Fourier-Transformation (DFT)“

Fourier-Reihen, Teil 5 – Schwebungen

In Teil 1 haben wir gesehen, dass die Addition von Sinussignalen unterschiedlicher Frequenzen wieder ein periodisches Signal ergibt, wenn alle Frequenzen ganzzahlige Vielfache einer Grundfrequenz f_1 sind. Die Periodendauer des Summensignals ist dann T = 1/f_1. In diesem Teil beschäftigen wir uns mit Frequenzen, die nicht mehr ganzzahlige Vielfache voneinander sind.

Weiterlesen „Fourier-Reihen, Teil 5 – Schwebungen“

Zeiger und Wechselsspannungen bzw. Wechselströme

(2018-05-21 überarbeitet) Wechselspannungen und Wechselströme sind im einfachsten Fall sinusförmig. Warum? Weil kompliziertere periodische Signale die Summe von Sinus-Funktionen unterschiedlicher Frequenzen sind (s. die Serie über Fourier-Reihen). Die einfachste Möglichkeit ist also ein Sinus mit einer Frequenz.

Da die Spannung u(t) (in V) und die Stromstärke i(t) (in A) vom selben elektromagnetischen Wechselfeld erzeugt werden, haben sie auch dieselbe Frequenz. Allerdings können sie zeitlich verschoben sein, müssen also nicht dieselbe Phase haben. Ein solches Beispiel ist in Abb. 1 gezeigt.

AnimUIZeiger
Abb. 1: Zeitlicher Verlauf von Spannung u und Stromstärke i bei einer idealen Luftspule.

Weiterlesen „Zeiger und Wechselsspannungen bzw. Wechselströme“

Fourier-Reihen, Teil 4 – rein reelle Berechnung des Spektrums

Im letzten Teil haben wir uns überlegt, wie wir ein periodisches Signal s mit Periodendauer T als Projektion der Summe rotierender Zeiger schreiben können:

\displaystyle s(t) = \Im\left(\sum_{k=0}^\infty \underline{A}_k \cdot e^{\underline{i}k\omega_1t}\right) = \sum_{k=0}^\infty \Im\left(\underline{A}_k \cdot e^{\underline{i}k\omega_1t}\right) ,

wobei \omega_1 = \tau/T = 2\pi/T die Grundkreisfrequenz ist. Für die komplexen Amplituden haben wir

\underline{A}_k = \begin{cases} \displaystyle \frac{\underline{i}}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} s(t) \, \mathrm{d}t & \text{wenn } k = 0 \text{ ist}\\[3ex] \displaystyle \frac{2\underline{i}}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} s(t) \cdot e^{-\underline{i}k\omega_1 t} \, \mathrm{d}t & \text{wenn } k > 0 \text{ ist}\end{cases}

erhalten. Die Integrationsgrenzen sind dabei beliebig, solange immer über genau eine Periodendauer T integriert wird.

Obwohl sich die Schönheit der rotierenden Zeiger nur in der komplexen Sichtweise zeigt, bevorzugen manche eine rein reelle Rechnung. Nicht zuletzt deshalb, weil die Fourier-Reihe in vielen Büchern so angegeben ist. Persönlich finde ich jedoch, dass die Sache dadurch nicht schöner wird.

Weiterlesen „Fourier-Reihen, Teil 4 – rein reelle Berechnung des Spektrums“

Fourier-Reihen, Teil 3 – Die Berechnung des Spektrums

In den ersten beiden Teilen (Teil 1 und Teil 2) haben wir rotierende Zeiger addiert, deren Frequenzen jeweils ganzzahlige Vielfache der Frequenz des langsamsten Zeigers waren. Die Projektion des Summenzeigers führt zu einer periodischen Funktion, mit einer Periodendauer, die gleich der Periode des langsamsten Zeigers ist.

Jetzt drehen wir die Sache um: Wir haben eine reelle, periodische Funktion s (das Signal; um nicht wieder f für die Funktion und die Frequenz zu verwenden), deren Periodendauer gleich T ist. Entsprechend ist ihre Grundfrequenz f_1 = 1/T und die Grundkreisfrequenz \omega_1 = \tau \cdot f_1 = \tau / T. (Als Tauist verwende ich wie immer die Kreiskonstante \tau = 2\pi.) Dieses Signal s wollen wir als die Projektion der Summe rotierender Zeiger

\displaystyle s(t) = \Im\left(\sum_{k=0}^\infty\underline{A}_k \cdot e^{\underline{i}k\omega_1 t}\right) = \sum_{k=0}^\infty\Im\left(\underline{A}_k \cdot e^{\underline{i}k\omega_1 t}\right)

schreiben.

Wie kommen wir nun zu den komplexen Amplituden \underline{A}_k?

Weiterlesen „Fourier-Reihen, Teil 3 – Die Berechnung des Spektrums“

Fourier-Reihen, Teil 2 – Das Spektrum

In Teil 1 haben wir gesehen, dass die Projektion der Summe rotierender Zeiger eine periodische Funktion ergeben kann, wenn die Frequenzen der einzelnen Zeiger ganzzahlige Vielfache der Frequenz des langsamsten Zeigers sind.

In diesem Beitrag werden wir ein paar weitere Beispiele sehen und uns die komplexen Amplituden \underline{A}_k der einzelnen Zeiger genauer ansehen. Die Menge dieser \underline{A}_k einer Funktion f ist das Spektrum von f.

Weiterlesen „Fourier-Reihen, Teil 2 – Das Spektrum“

Fourier-Reihen, Teil 1 – Addition rotierender Zeiger

In Teil 6 der Serie über komplexe Zahlen haben wir Zeiger besprochen, die sich mit konstanter Geschwindigkeit im Kreis drehen. Die Projektion so eines Zeigers entlang der reellen Achse ergab eine zeitabhängige Funktion – die allgemeine Sinus-Funktion.

Was passiert, wenn wir – wie in Abb. 1 gezeigt – mehrere solche Zeiger addieren? Welche Funktionen ergeben sich aus der Projektion des Summenzeigers?

ZeigerSin1Sin2
Abb. 1: Addition verschieden schnell rotierender Zeiger. Der rote Summenzeiger läuft nicht mehr auf einem Kreis, sondern entlang einer Epizykloide.

Weiterlesen „Fourier-Reihen, Teil 1 – Addition rotierender Zeiger“

Komplexe Zahlen, Teil 6b – die allgemeine Sinus-Funktion

Im letzten Teil haben wir gesehen, wie rotierende Zeiger mit der Sinus-Funktion zusammenhängen. Wir konnten die Kreisfrequenz \omega, die Amplitude A, die Phase \varphi oder den Mittelwert m vorgeben.

Oder wir geben alle vier Parameter gleichzeitig vor, was uns zur allgemeinen Sinus-Funktion

\Im\left(\underline{A}e^{\underline{i}\omega t} + m\underline{i}\right) = \Im\left(A e^{\underline{i} (\omega t + \varphi)} + m\underline{i}\right) = A\sin(\omega t + \varphi) + m

führt. Ein Beispiel dafür zeigt Abb. 1.

ZeigerAllgSin
Abb. 1: allgemeine Sinus-Funktion mit Amplitude A = 2, Kreisfrequenz \omega, Phase \varphi = \tau/8 = 45^\circ und Mittelwert m = 1.

Weiterlesen „Komplexe Zahlen, Teil 6b – die allgemeine Sinus-Funktion“

Komplexe Zahlen, Teil 6 – rotierende Pfeile (Zeiger) und trigonometrische Funktionen

Bisher haben wir nur zeitlich fixierte Pfeile in der Ebene betrachtet. Ab jetzt lassen wir sie mit konstanter Geschwindigkeit rotieren – wodurch sie zu Zeigern werden.

Der Pfeil e^{\underline{i}\,\alpha} hatte die Länge (den Betrag) 1 und den Winkel \alpha gegen die reelle Achse \Re (s. Abb. 1). Wenn der Winkel \alpha linear mit der Zeit t zunimmt, kann man ihn als zeitlich veränderlichen Bruchteil der vollen Umdrehung \tau = 2\pi auffassen:

\displaystyle\alpha = \frac{t}{T} \cdot \tau = \frac{\tau}{T} \cdot t .

Zeiger1Anim
Abb. 1: Ein Pfeil mit fixem Winkel \alpha = \tau/8 = 45^\circ (links) und ein Zeiger, dessen Winkel linear mit der Zeit zunimmt (rechts). Der mathematisch positive Drehsinn ist gegen den Uhrzeigersinn.

Weiterlesen „Komplexe Zahlen, Teil 6 – rotierende Pfeile (Zeiger) und trigonometrische Funktionen“