Mathe-Zentralmatura 2018

Die Ergebnisse der diesjährigen Mathe-Zentralmatura machen schon vor Bekanntgabe der endgültigen Ergebnisse Schlagzeilen (derStandard). Mit ein Grund für die etwas schlechteren Ergebnisse heuer dürfte die Anhebung der Lösungsquoten für die einzelnen Noten gewesen sein. In Abb. 1 habe ich sie für meine bisherigen vier Matura-Klassen (1-mal IT und 3-mal Mechatronik) als Funktion der Zeit gezeichnet.

NotenSkala2016-18
Abb. 1: Benötigte Lösungsquoten für die einzelnen Noten von 2016 bis 2018 (HTL Mechatronik 2016–18 und IT 2016; nur Haupttermine im Mai).

Weiterlesen „Mathe-Zentralmatura 2018“

Zeiger und Wechselsspannungen bzw. Wechselströme

(2018-05-21 überarbeitet) Wechselspannungen und Wechselströme sind im einfachsten Fall sinusförmig. Warum? Weil kompliziertere periodische Signale die Summe von Sinus-Funktionen unterschiedlicher Frequenzen sind (s. die Serie über Fourier-Reihen). Die einfachste Möglichkeit ist also ein Sinus mit einer Frequenz.

Da die Spannung u(t) (in V) und die Stromstärke i(t) (in A) vom selben elektromagnetischen Wechselfeld erzeugt werden, haben sie auch dieselbe Frequenz. Allerdings können sie zeitlich verschoben sein, müssen also nicht dieselbe Phase haben. Ein solches Beispiel ist in Abb. 1 gezeigt.

AnimUIZeiger
Abb. 1: Zeitlicher Verlauf von Spannung u und Stromstärke i bei einer idealen Luftspule.

Weiterlesen „Zeiger und Wechselsspannungen bzw. Wechselströme“

Fourier-Reihen, Teil 4 – rein reelle Berechnung des Spektrums

Im letzten Teil haben wir uns überlegt, wie wir ein periodisches Signal s mit Periodendauer T als Projektion der Summe rotierender Zeiger schreiben können:

\displaystyle s(t) = \Im\left(\sum_{k=0}^\infty \underline{A}_k \cdot e^{\underline{i}k\omega_1t}\right) = \sum_{k=0}^\infty \Im\left(\underline{A}_k \cdot e^{\underline{i}k\omega_1t}\right) ,

wobei \omega_1 = \tau/T = 2\pi/T die Grundkreisfrequenz ist. Für die komplexen Amplituden haben wir

\underline{A}_k = \begin{cases} \displaystyle \frac{\underline{i}}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} s(t) \, \mathrm{d}t & \text{wenn } k = 0 \text{ ist}\\[3ex] \displaystyle \frac{2\underline{i}}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} s(t) \cdot e^{-\underline{i}k\omega_1 t} \, \mathrm{d}t & \text{wenn } k > 0 \text{ ist}\end{cases}

erhalten. Die Integrationsgrenzen sind dabei beliebig, solange immer über genau eine Periodendauer T integriert wird.

Obwohl sich die Schönheit der rotierenden Zeiger nur in der komplexen Sichtweise zeigt, bevorzugen manche eine rein reelle Rechnung. Nicht zuletzt deshalb, weil die Fourier-Reihe in vielen Büchern so angegeben ist. Persönlich finde ich jedoch, dass die Sache dadurch nicht schöner wird.

Weiterlesen „Fourier-Reihen, Teil 4 – rein reelle Berechnung des Spektrums“

Fourier-Reihen, Teil 3 – Die Berechnung des Spektrums

In den ersten beiden Teilen (Teil 1 und Teil 2) haben wir rotierende Zeiger addiert, deren Frequenzen jeweils ganzzahlige Vielfache der Frequenz des langsamsten Zeigers waren. Die Projektion des Summenzeigers führt zu einer periodischen Funktion, mit einer Periodendauer, die gleich der Periode des langsamsten Zeigers ist.

Jetzt drehen wir die Sache um: Wir haben eine reelle, periodische Funktion s (das Signal; um nicht wieder f für die Funktion und die Frequenz zu verwenden), deren Periodendauer gleich T ist. Entsprechend ist ihre Grundfrequenz f_1 = 1/T und die Grundkreisfrequenz \omega_1 = \tau \cdot f_1 = \tau / T. (Als Tauist verwende ich wie immer die Kreiskonstante \tau = 2\pi.) Dieses Signal s wollen wir als die Projektion der Summe rotierender Zeiger

\displaystyle s(t) = \Im\left(\sum_{k=0}^\infty\underline{A}_k \cdot e^{\underline{i}k\omega_1 t}\right) = \sum_{k=0}^\infty\Im\left(\underline{A}_k \cdot e^{\underline{i}k\omega_1 t}\right)

schreiben.

Wie kommen wir nun zu den komplexen Amplituden \underline{A}_k?

Weiterlesen „Fourier-Reihen, Teil 3 – Die Berechnung des Spektrums“

Fourier-Reihen, Teil 2 – Das Spektrum

In Teil 1 haben wir gesehen, dass die Projektion der Summe rotierender Zeiger eine periodische Funktion ergeben kann, wenn die Frequenzen der einzelnen Zeiger ganzzahlige Vielfache der Frequenz des langsamsten Zeigers sind.

In diesem Beitrag werden wir ein paar weitere Beispiele sehen und uns die komplexen Amplituden \underline{A}_k der einzelnen Zeiger genauer ansehen. Die Menge dieser \underline{A}_k einer Funktion f ist das Spektrum von f.

Weiterlesen „Fourier-Reihen, Teil 2 – Das Spektrum“

Fourier-Reihen, Teil 1 – Addition rotierender Zeiger

In Teil 6 der Serie über komplexe Zahlen haben wir Zeiger besprochen, die sich mit konstanter Geschwindigkeit im Kreis drehen. Die Projektion so eines Zeigers entlang der reellen Achse ergab eine zeitabhängige Funktion – die allgemeine Sinus-Funktion.

Was passiert, wenn wir – wie in Abb. 1 gezeigt – mehrere solche Zeiger addieren? Welche Funktionen ergeben sich aus der Projektion des Summenzeigers?

ZeigerSin1Sin2
Abb. 1: Addition verschieden schnell rotierender Zeiger. Der rote Summenzeiger läuft nicht mehr auf einem Kreis, sondern entlang einer Epizykloide.

Weiterlesen „Fourier-Reihen, Teil 1 – Addition rotierender Zeiger“

Komplexe Zahlen, Teil 6b – die allgemeine Sinus-Funktion

Im letzten Teil haben wir gesehen, wie rotierende Zeiger mit der Sinus-Funktion zusammenhängen. Wir konnten die Kreisfrequenz \omega, die Amplitude A, die Phase \varphi oder den Mittelwert m vorgeben.

Oder wir geben alle vier Parameter gleichzeitig vor, was uns zur allgemeinen Sinus-Funktion

\Im\left(\underline{A}e^{\underline{i}\omega t} + m\underline{i}\right) = \Im\left(A e^{\underline{i} (\omega t + \varphi)} + m\underline{i}\right) = A\sin(\omega t + \varphi) + m

führt. Ein Beispiel dafür zeigt Abb. 1.

ZeigerAllgSin
Abb. 1: allgemeine Sinus-Funktion mit Amplitude A = 2, Kreisfrequenz \omega, Phase \varphi = \tau/8 = 45^\circ und Mittelwert m = 1.

Weiterlesen „Komplexe Zahlen, Teil 6b – die allgemeine Sinus-Funktion“

Komplexe Zahlen, Teil 6 – rotierende Pfeile (Zeiger) und trigonometrische Funktionen

Bisher haben wir nur zeitlich fixierte Pfeile in der Ebene betrachtet. Ab jetzt lassen wir sie mit konstanter Geschwindigkeit rotieren – wodurch sie zu Zeigern werden.

Der Pfeil e^{\underline{i}\,\alpha} hatte die Länge (den Betrag) 1 und den Winkel \alpha gegen die reelle Achse \Re (s. Abb. 1). Wenn der Winkel \alpha linear mit der Zeit t zunimmt, kann man ihn als zeitlich veränderlichen Bruchteil der vollen Umdrehung \tau = 2\pi auffassen:

\displaystyle\alpha = \frac{t}{T} \cdot \tau = \frac{\tau}{T} \cdot t .

Zeiger1Anim
Abb. 1: Ein Pfeil mit fixem Winkel \alpha = \tau/8 = 45^\circ (links) und ein Zeiger, dessen Winkel linear mit der Zeit zunimmt (rechts). Der mathematisch positive Drehsinn ist gegen den Uhrzeigersinn.

Weiterlesen „Komplexe Zahlen, Teil 6 – rotierende Pfeile (Zeiger) und trigonometrische Funktionen“

Division ist Multiplikation mit dem Kehrwert

Als HTL-Lehrer unterrichte ich Schüler ab dem 14. Lebensjahr. Davor ist im Mathematik-Unterricht schon einiges passiert – aus meiner Sicht ist nicht alles davon zum Vorteil der Schüler.

Die Mystifizierung des °-Zeichens und daraus folgende, unnötig komplizierte Formeln für Kreisbögen etc., habe ich schon angesprochen. Ähnliches gilt für die Prozentrechnung (dazu später mehr).

Hier soll es jetzt um die Bruchrechnung – speziell die Division durch Brüche – gehen.

Weiterlesen „Division ist Multiplikation mit dem Kehrwert“

Was sind reelle Zahlen?

Zeichenketten und Pfeile

In der Schule lernen wir reelle Zahlen als Dezimalzahlen mit indo-arabischen Ziffern zu schreiben. Z.B. fünfhundertsiebenundzwanzig-einhalb schreiben wir als

527.5 .

Für negative Zahlen setzen wir noch einen kleinen Querstrich (ein Minus) vor die Zahl, z.B. minus siebenhundertsechsunddreißig-einachtel:

-736.125 .

Dezimalzahlen sind Zeichenketten aus den möglichen Ziffern 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, einem Dezimalkomma ».« (oder »,«), und einem eventuellen Vorzeichen (+/-). Diese Zeichenketten können unendlich lang werden (und müssen es für die meisten Zahlen auch sein).

Im 1. Teil über komplexe Zahlen haben wir gesehen, dass man reelle Zahlen aber auch als Pfeile entlang einer Geraden zeichnen kann (s. Abb. 1) – jeder Dezimalzahl entspricht dabei genau ein Pfeil und umgekehrt.

reell_4_3
Abb. 1: Dieselbe reelle Zahl einmal als Dezimalzahl geschrieben (links) und einmal als Pfeil entlang der reellen Achse gezeichnet (rechts).

Was also sind die reellen Zahlen nun wirklich?

Weiterlesen „Was sind reelle Zahlen?“