Wozu Mittelwerte?

Angenommen, man hat eine Messgröße, die man durch eine Zufallsvariable X modellieren kann. Der Erwartungswert von X sei \mu und die Standardabweichung sei \sigma.

Misst man diese Messgröße mehrfach, wird man voraussichtlich verschiedene Werte erhalten, deren Streuung durch die Verteilung von X modelliert wird.

Berechnet man den Mittelwert \bar{x} dieser n Messungen, kann man ihn durch die Zufallsvariable \overline{X} modellieren. Wenn die Messungen alle voneinander unabhängig waren, gilt für den Erwartungswert des Mittelwertes

\mathscr{E}(\overline{X}) = \mathscr{E}(X) = \mu

und für die Standardabweichung (»Standardfehler«) des Mittelwertes

\displaystyle\mathscr{S}(\overline{X}) = \frac{\mathscr{S}(X)}{\sqrt{n}} = \frac{\sigma}{\sqrt{n}}\,.

Diese Formeln gelten unabhängig von der konkreten Verteilung von X; die zweite wird oft auch als »Wurzel-n-Gesetz« bezeichnet.

Weiterlesen „Wozu Mittelwerte?“