Komplexe Zahlen, Teil 2 – Multiplikation, Drehung und die Eulersche Formel

Im 1. Teil haben wir gesehen, dass die Multiplikation komplexer Zahlen eine Drehstreckung der entsprechenden Pfeile ist. Wie Abb. 1 zeigt, wird aus der Drehstreckung eine einfache Drehung, wenn einer der Pfeile die Länge 1 hat.

raz
Abb. 1: Der Pfeil \underline{R}_\alpha hat die Länge 1 und den Winkel \alpha zur positiven reellen Achse (links). Multipliziert man einen beliebigen Pfeil \underline{z} mit \underline{R}_\alpha, wird \underline{z} einfach um den Winkel \alpha gedreht (rechts).

Das haben wir schon bei der Multiplikation des Pfeils \underline{i} mit sich selber gesehen, um \underline{i}^2 = -1 zu erhalten.

Weiterlesen „Komplexe Zahlen, Teil 2 – Multiplikation, Drehung und die Eulersche Formel“