Wahrscheinlichkeit und radioaktiver Zerfall

Der radioaktive Zerfall eines Atomkerns ist ein völlig zufälliger Prozess. Wir können nicht vorhersagen, wann ein bestimmter Kern zerfallen wird. Daher wissen wir auch nicht genau, wann noch wie viele Kerne nicht zerfallen sind.

Andererseits hat fast jeder in der Oberstufe das radioaktive Zerfallsgesetz

N(t)=N_0\cdot e^{-\lambda\cdot t}

kennengelernt. Dabei ist N_0 die Zahl der zu Beginn vorhandenen Kerne, N(t) die Anzahl der zur Zeit t noch nicht zerfallenen Kerne und \lambda>0 ist die Zerfallskonstante des Materials. Das ist ein exakter funktionaler Zusammenhang.

Wie kann ein völlig zufälliger Vorgang zu einem exakten Gesetz führen?

Weiterlesen „Wahrscheinlichkeit und radioaktiver Zerfall“

Das empirische »Gesetz« der großen Zahlen

Im letzten Beitrag haben wir gesehen, wie in einem längeren Münzwurfexperiment die relative Häufigkeit für Kopf immer näher an 1/2 herangekommen ist. Obwohl es keine Garantie dafür gibt, dass es so sein muss, ist so eine Stabilisierung von relativen Häufigkeiten und anderen Messgrößen oft zu beobachten. Diese Erfahrungstatsache nennt man das empirische »Gesetz« der großen Zahlen.

Wie kann man sich das erklären?

Weiterlesen „Das empirische »Gesetz« der großen Zahlen“