Wie weit können Messwerte vom Mittelwert abweichen?

Wenn wir eine Größe oft gemessen haben, möchten wir statt allen Messwerten einfach einen typischen Wert angeben. Wie groß ist z.B. das typische Einkommen aller Österreicher? Oft wird dafür das arithmetische Mittel \bar{x} verwendet, das eigentlich der Schwerpunkt der Messwerte ist. (Zur Diskussion Mittelwert oder Median wird es noch einen Artikel geben.)

Die einzelnen Messwerte streuen mehr oder weniger weit um diesen Mittelwert. Ein Maß für die Streuung ist die Standardabweichung s_n. Als typischer Bereich der Werte wird oft das Intervall [\bar{x}-s_n;\bar{x}+s_n] verwendet.

Aber wie viele Werte sind wirklich in diesem Bereich bzw. wie weit können die Messwerte überhaupt vom Mittelwert abweichen? Wie wir sehen werden, ist [\bar{x}-\sqrt{2}\,s_n;\bar{x}+\sqrt{2}\,s_n] der Bereich, in dem garantiert mindestens die Hälfte der Messwerte liegt. Und typisch kann ja nur etwas sein, was zumindest für die Hälfte zutrifft. Darüber hinaus liegen sicher alle n Messwerte im Intervall [\bar{x}-\sqrt{n-1}\cdot s_n;\bar{x}+\sqrt{n-1}\cdot s_n].

Weiterlesen „Wie weit können Messwerte vom Mittelwert abweichen?“

Komplexe Zahlen, Teil 6b – die allgemeine Sinus-Funktion

Im letzten Teil haben wir gesehen, wie rotierende Zeiger mit der Sinus-Funktion zusammenhängen. Wir konnten die Kreisfrequenz \omega, die Amplitude A, die Phase \varphi oder den Mittelwert m vorgeben.

Oder wir geben alle vier Parameter gleichzeitig vor, was uns zur allgemeinen Sinus-Funktion

\Im\left(\underline{A}e^{\underline{i}\omega t} + m\underline{i}\right) = \Im\left(A e^{\underline{i} (\omega t + \varphi)} + m\underline{i}\right) = A\sin(\omega t + \varphi) + m

führt. Ein Beispiel dafür zeigt Abb. 1.

ZeigerAllgSin
Abb. 1: allgemeine Sinus-Funktion mit Amplitude A = 2, Kreisfrequenz \omega, Phase \varphi = \tau/8 = 45^\circ und Mittelwert m = 1.
Weiterlesen „Komplexe Zahlen, Teil 6b – die allgemeine Sinus-Funktion“

Konfidenzintervalle für den Mittelwert der Grundgesamtheit

Wenn man sich für eine bestimmte Eigenschaft X einer (großen) Grundgesamtheit interessiert, könnte man natürlich hergehen, und sie tatsächlich für alle Angehörigen der Grundgesamtheit messen. Man könnte also z.B. bei jeder Schweißnaht prüfen, bei welcher Kraft sie wirklich reißt, oder jede Woche alle Wähler befragen, wen sie denn wählen möchten, oder …

Wie die obigen Beispiele zeigen, kann man das, was man von Allen wissen will, praktisch eben nicht immer an Allen messen.

Vielleicht ist das Messverfahren zerstörend, oder es ist zu teuer, oder man ist einfach zu faul. In solchen Fällen zieht man eine (kleine) Stichprobe aus der Grundgesamtheit und macht die Messungen nur in dieser Probe. Die Preisfrage lautet jetzt natürlich: Was können wir aus unseren Ergebnissen in der Stichprobe über die Grundgesamtheit aussagen?

Weiterlesen „Konfidenzintervalle für den Mittelwert der Grundgesamtheit“

Wozu Mittelwerte?

Angenommen, man hat eine Messgröße, die man durch eine Zufallsvariable X modellieren kann. Der Erwartungswert von X sei \mu und die Standardabweichung sei \sigma.

Misst man diese Messgröße mehrfach, wird man voraussichtlich verschiedene Werte erhalten, deren Streuung durch die Verteilung von X modelliert wird.

Berechnet man den Mittelwert \bar{x} dieser n Messungen, kann man ihn durch die Zufallsvariable \overline{X} modellieren. Wenn die Messungen alle voneinander unabhängig waren, gilt für den Erwartungswert des Mittelwertes

\mathscr{E}(\overline{X}) = \mathscr{E}(X) = \mu

und für die Standardabweichung (»Standardfehler«) des Mittelwertes

\displaystyle\mathscr{S}(\overline{X}) = \frac{\mathscr{S}(X)}{\sqrt{n}} = \frac{\sigma}{\sqrt{n}}\,.

Diese Formeln gelten unabhängig von der konkreten Verteilung von X; die zweite wird oft auch als »Wurzel-n-Gesetz« bezeichnet.

Weiterlesen „Wozu Mittelwerte?“